Problem #PRU-35181

Problemas Teoría de Números Divisibilidad División con restos. Aritmética de restos División con resto Números impares y pares Métodos Principio de Casillas Principio de Casillas (otro)

Problem

\(2n\) diplomats sit around a round table. After a break the same \(2n\) diplomats sit around the same table, but this time in a different order.

Prove that there will always be two diplomats with the same number of people sitting between them, both before and after the break.