Problem #PRU-60514

Problems Algebra and arithmetic Algebraic equations and systems of equations Diophantine equations

Problem

Numbers \(a, b, c\) are integers with \(a\) and \(b\) being coprime. Let us assume that integers \(x_0\) and \(y_0\) are a solution for the equation \(ax + by = c\).

Prove that every solution for this equation has the same form \(x = x_0 + kb\), \(y = y_0 - ka\), with \(k\) being a random integer.