The numbers \(a_1, a_2, \dots , a_k\) are such that the equality \(\lim\limits_{n\to\infty} (x_n + a_1x_{n - 1} + \dots + a_kx_{n - k}) = 0\) is possible only for those sequences \(\{x_n\}\) for which \(\lim\limits_{n\to\infty} x_n = 0\). Prove that all the roots of the polynomial P \((\lambda) = \lambda^k + a_1 \lambda^{k-1} + a_2 \lambda^{k -2} + \dots + a_k\) are modulo less than 1.