The sequence of numbers \(\{a_n\}\) is given by \(a_1 = 1\), \(a_{n + 1} = 3a_n/4 + 1/a_n\) (\(n \geq 1\)). Prove that:
a) the sequence \(\{a_n\}\) converges;
b) \(|a_{1000} - 2| < (3/4)^{1000}\).