A numerical set x1,…,xn is given. Consider the function d(t)=mini=1,…,n|xi−t|+maxi=1,…,n|xi−t|2.
a) Is it true that the function d(t) takes the smallest value at a single point, for any set of numbers x1,…,xn?
b) Compare the values of d(c) and d(m) where c=mini=1,…,nxi+maxi=1,…,nxi2 and m is the median of the specified set.