Problem #PRU-66049

Problems Probability and statistics Probability theory Discrete distribution Methods Examples and counterexamples. Constructive proofs Algebra Mean values

Problem

In a tournament, 100 wrestlers are taking part, all of whom have different strengths. In any fight between two wrestlers, the one who is stronger always wins. In the first round the wrestlers broke into random pairs and fought each other. For the second round, the wrestlers once again broke into random pairs of rivals (it could be that some pairs will repeat). The prize is given to those who win both matches. Find:

a) the smallest possible number of tournament winners;

b) the mathematical expectation of the number of tournament winners.