Problem #PRU-78244

Problemas Álgebra Valor absoluto Valor absoluto de un número (otro) Teoría de números Sistemas numéricos Sistema de números decimales Ecuaciones algebraicas y sistemas de ecuaciones Ecuaciones de orden superior. Ecuaciones polinómicas palindrómicas Ecuaciones de orden superior (otro)

Problem

Two people play a game with the following rules: one of them guesses a set of integers \((x_1, x_2, \dots , x_n)\) which are single-valued digits and can be either positive or negative. The second person is allowed to ask what is the sum \(a_1x_1 + \dots + a_nx_n\), where \((a_1, \dots ,a_n)\) is any set. What is the smallest number of questions for which the guesser recognizes the intended set?