Problem #PRU-100467

Problems Combinatorics Dissections, partitions, covers and tilings Paritions of figures in segments

Problem

Consider another equilateral triangle. Is it possible to cut it into (a) 9; (b) 16; (c) 28; (d) 2; (e) 42 smaller equilateral triangles (which are not necessarily identical)?

(f) Kyle claims he can cut an equilateral triangle into any number of smaller (not necessarily identical) equilateral triangles if this number is either greater than 8 and divisible by 3, or greater than 3 and has remainder 1 when divided by 3. Prove or disprove Kyle’s statement.

(g)* Let \(n\) be a natural number greater than 5. Is it true one can cut an equilateral triangle into \(n\) smaller equilateral triangles?