Problem #WSP-000198

Problems Geometry Plane geometry Triangles Similar triangles

Problem

Let \(CB\) and \(CD\) be tangents to the circle with the centre \(A\), let \(E\) be the point of intersection of the line \(AC\) with the circle. Draw \(FG\) as the segment of a tangent drawn through the point \(E\) between the lines \(CB\) and \(CD\). Find \(FG\) if the radius of the circle is \(15\) and \(AC = 39\).