Problems

Age
Difficulty
Found: 4

The polynomial \(P(x)=x^3+3x^2-7x+1\) has three distinct roots: \(a,b,\) and \(c\). What is the value of \(a^2+b^2+c^2\)?

Find the remainder of dividing \(x^{100}-2x^{51}+1\) by \(x^2-1\). Try not to do a long calculation.

Katie and James take turns replacing the stars with any number of their choice in the following polynomial from left to right: \[x^4 +\star x^3+\star x^2+\star x+\star.\] Katie wins if once the game is over, the resulting polynomial has no integer roots (i.e: no roots which are whole numbers). Does James have a winning strategy?

Show that if a polynomial \(P(x)\) has an integer root (i.e: a root that is a whole number), then it can’t be that \(P(0)\) and \(P(1)\) are both odd.