Problems

Age
Difficulty
Found: 6

So far we have discussed polynomials in one variable, i.e: with only an \(x\) as our variable. We can however, include as many as we want. For example, we can talk of a polynomial such as \[P(x,y)=x^2-y^2,\] where both \(x\) and \(y\) are variables. This is an example of an antisymmetric polynomial, which means that \(P(x,y)=-P(y,x)\) (i.e: switching \(x\) for \(y\) gives the original polynomial with a minus sign). Conversely, a polynomial \(Q(x,y)\) such that \(Q(x,y)=Q(y,x)\) is called symmetric. Show that every antisymmetric polynomial \(P(x,y)\) can be factored as \[P(x,y)=(x-y)Q(x,y),\] where \(Q(x,y)\) is a symmetric polynomial.

Solve the equation \[\left(x^2-3x+3\right)^2-3\left(x^2-3x+3\right)+3=x\]

A very important tool in maths is to use symmetries to make problems easier. For today, define a symmetry of a shape as a movement that leaves the shape looking exactly the same as initial. For example, rotating a square by \(90^\circ\) (spinning it by a quarter turn) is a symmetry. Imagine you are playing lights out on a board that has no quiet plans. Explain why if a light pattern has a certain symmetry, then its corresponding plan will also have the same symmetry.

A \(3\times 3\) “Lights Out" board starts with all the lights off. Explain why \(5\) is the smallest number of presses you need to turn the whole board on.

Alice and Jamie each have an identical “Lights Out” board (same size, same rules). Both boards start with all lights off, and on this board size there are no quiet plans. Alice presses a plan \(A\); Jamie presses a different plan \(B\) (not the same set of buttons). Could they end up with exactly the same final pattern of lights?