In the magical land of Anchuria there is a drafts championship made up of several rounds. The days and cities in which the rounds are carried out are determined by a draw. According to the rules of the championship, no two rounds can take place in one city, and no two rounds can take place on one day. Among the fans, a lottery is arranged: the main prize is given to those who correctly guess, before the start of the championship, in which cities and on which days all of the round will take place. If no one guesses, then the main prize will go to the organising committee of the championship. In total, there are eight cities in Anchuria, and the championship is only allotted eight days. How many rounds should there be in the championship, so that the organising committee is most likely to receive the main prize?
This problem is from Ancient Rome.
A rich senator died, leaving his wife pregnant. After the senator’s death it was found out that he left a property of 210 talents (an Ancient Roman currency) in his will as follows: “In the case of the birth of a son, give the boy two thirds of my property (i.e. 140 talents) and the other third (i.e. 70 talents) to the mother. In the case of the birth of a daughter, give the girl one third of my property (i.e. 70 talents) and the other two thirds (i.e. 140 talents) to the mother.”
The senator’s widow gave birth to twins: one boy and one girl. This possibility was not foreseen by the late senator. How can the property be divided between three inheritors so that it is as close as possible to the instructions of the will?