Let \(z = x + iy\), \(w = u + iv\). Find a) \(z + w\); b) \(zw\); c) \(z/w\).
Prove the equalities:
a) \(\overline{z+w} = \overline{z} + \overline{w}\); b) \(\overline{zw} = \overline{z} \overline{w}\); c) \(\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}\); d) \(|\overline{z}| = |z|\); d) \(\overline{\overline{z}} = z\).
Prove the equalities:
a) \(z + \overline {z} = 2 \operatorname{Re} z\);
b) \(z - \overline {z} = 2i \operatorname{Im} z\);
c) \(\overline {z} z = |z|^2\).
Let \(z_1\) and \(z_2\) be fixed points of a complex plane. Give a geometric description of the sets of all points \(z\) that satisfy the conditions:
a) \(\operatorname{arg} \frac{z - z_1}{z - z_2} = 0\);
b) \(\operatorname{arg} \frac{z_1 - z}{z - z_2} = 0\).