What’s the sum of the Fibonacci numbers \(F_0+F_1+F_2+...+F_n\)?
What’s the sum \(\frac{F_2}{F_1}+\frac{F_4}{F_2}+\frac{F_6}{F_3}+...+\frac{F_{18}}{F_9}+\frac{F_{20}}{F_{10}}\)?
Is \(F_{100}\) odd or even?
Is \(F_{100}\) a multiple of \(3\)?
Let \(n\) be a positive integer. Can \(n^7-77\) ever be a Fibonacci number?