Problems

Age
Difficulty
Found: 9

Show that \(\frac{x}{y} + {\frac{y}{z}} + {\frac{z}{x}} = 1\) is not solvable in natural numbers.

There are two numbers \(x\) and \(y\) being added together. The number \(x\) is less than the sum \(x+y\) by 2000. The sum \(x+y\) is bigger than \(y\) by 6. What are the values of \(x\) and \(y\)?

Prove there are no integer solutions for the equation \(3x^2 + 2 = y^2\).

Show that any natural number \(n\) can be uniquely represented in the form \(n = \binom{x}{1} + \binom{y}{2} + \binom{z}{3}\) where \(x, y, z\) are integers such that \(0 \leq x < y < z\), or \(0 = x = y < z\).

Two people play a game with the following rules: one of them guesses a set of integers \((x_1, x_2, \dots , x_n)\) which are single-valued digits and can be either positive or negative. The second person is allowed to ask what is the sum \(a_1x_1 + \dots + a_nx_n\), where \((a_1, \dots ,a_n)\) is any set. What is the smallest number of questions for which the guesser recognizes the intended set?