A student did not notice the multiplication sign between two three-digit numbers and wrote one six-digit number, which turned out to be exactly seven times their product. Determine these numbers.
The student did not notice the multiplication sign between two seven-digit numbers and wrote one fourteen-digit number, which turned out to be three times bigger than their product. Determine these numbers.
Solve the equation \((x + 1)^3 = x^3\).
Solve the equation \(3x + 5y = 7\) in integers. Make sure that you’ve found all integer solutions.
Determine all the integer solutions for the equation \(21x + 48y = 6\).
Recall that a natural number \(x\) is called prime if \(x\) has no divisors except \(1\) and itself. Solve the equation with prime numbers \(pqr = 7(p + q + r)\).
Solve the equation \(xy = x + y\) in integers.
Determine all solutions of the equation \((n + 2)! - (n + 1)! - n! = n^2 + n^4\) in natural numbers.
Find all functions \(f (x)\) defined for all real values of \(x\) and satisfying the equation \(2f (x) + f (1 - x) = x^2\).
How many rational terms are contained in the expansion of
a) \((\sqrt 2 + \sqrt[4]{3})^{100}\);
b) \((\sqrt 2 + \sqrt[3]{3})^{300}\)?