Problems

Age
Difficulty
Found: 10

The figure shows the scheme of a go-karting route. The start and finish are at point A, and the driver can go along the route as many times as he wants by going to point A and then back onto the circle.

It takes Fred one minute to get from A to B or from B to A. It also takes one minute for Fred to go around the ring and he can travel along the ring in an anti-clockwise direction (the arrows in the image indicate the possible direction of movement). Fred does not turn back halfway along the route nor does not stop. He is allowed to be on the track for 10 minutes. Find the number of possible different routes (i.e. sequences of possible routes).

Simplify F0F1+F2F3+...F2n1+F2n, where n is a positive integer.

Prove that every pair of consecutive Fibonacci numbers are coprime. That is, they share no common factors other than 1.

Calculate the following: F12F0F2, F22F1F3, F32F2F4, F42F3F5 and F52F4F6. What do you notice?

Work out F32F0F6, F42F1F7, F52F2F8 and F62F3F9. What pattern do you spot?

Can every whole number be written as the sum of two Fibonacci numbers? If yes, then prove it. If not, then give an example of a number that can’t be. The two Fibonacci numbers don’t have to be different.

What’s i=0nFi2=F02+F12+F22+...+Fn12+Fn2 in terms of just Fn and Fn+1?

What are the ratios F2F1, F3F2, and so on until F7F6? What do you notice about them?

φ=1+52 is the golden ratio. Using the fact that φ2=φ+1, can you express φ3 in the form aφ+b, where a and b are positive integers?