Replace the letters with digits in a way that makes the following sum as big as possible: \[SEND +MORE +MONEY.\]
Jane wrote another number on the board. This time it was a two-digit number and again it did not include digit 5. Jane then decided to include it, but the number was written too close to the edge, so she decided to t the 5 in between the two digits. She noticed that the resulting number is 11 times larger than the original. What is the sum of digits of the new number?
a) Find the biggest 6-digit integer number such that each digit, except for the two on the left, is equal to the sum of its two left neighbours.
b) Find the biggest integer number such that each digit, except for the rst two, is equal to the sum of its two left neighbours. (Compared to part (a), we removed the 6-digit number restriction.)
Jessica, Nicole and Alex received 6 coins between them: 3 gold coins and 3 silver coins. Each of them received 2 coins. Jessica doesn’t know which coins the others received but only which coins she has. Think of a question which Jessica can answer with either “yes”, “no” or “I don’t know” such that from the answer you can know which coins Jessica has.
There are \(12\) aliens in the High Council of the planet of liars and truth tellers. “There is no-one honest here,” said the first member of the council. “There is at most one honest person here,” said the second person. The third person said that there are at most \(2\) honest members, the fourth person said there are at most \(3\) honest aliens, and so on until the twelfth person, who said there are at most \(11\) honest aliens. How many honest members are in the High Council?
One day all the truth tellers on the planet decided to carry a clearly visible mark of truth in order to be distinguished from liars. Two truth tellers and two liars met and looked at each other. Which of them could say the phrase:
“All of us are truth tellers.”
“Only one of you is a truth teller.”
“Exactly two of you are truth tellers.”
Four children said the following about each other.
Mary: Sarah, Nathan and George solved the problem.
Sarah: Mary, Nathan and George didn’t solve the problem.
Nathan: Mary and Sarah lied.
George: Mary, Sarah and Nathan told the truth.
How many of the children actually told the truth?
A monkey, donkey and goat decided to play a game. They sat in a row, with the monkey on the right. They started to play the violin, but very poorly. They changed places and then the donkey was in the middle. However the violin trio still didn’t sound as they wanted it to. They changed places once more. After changing places 3 times, each of the three “musicians” had a chance to sit in the left, middle and right of the row. Who sat where after the third change of seats?
There is a group of 5 people: Alex, Beatrice, Victor, Gregory and Deborah. Each of them has one of the following codenames: V, W, X, Y, Z. We know that:
Alex is 1 year older than V,
Beatrice is 2 years older than W,
Victor is 3 years older than X,
Gregory is 4 years older than Y.
Who is older and by how much: Deborah or Z?
An adventurer is travelling to the planet of liars and truth tellers with an official guide and is introduced to a local. “Are you a truth teller?” asked the adventurer. The alien answers “Yrrg,” which means either “yes” or “no”. The adventurer asks the guide for a translation. The guide says “"yrrg" means "yes". I will add that the local is actully a liar.” Is the local alien liar or truth teller?