Problems

Age
Difficulty
Found: 45

Solve the rebus \(AC \times CC \times K = 2002\) (different letters correspond to different integers and vice versa).

Can the equality \(K \times O \times T\) = \(U \times W \times E \times H \times S \times L\) be true if instead of the letters in it we substitute integers from 1 to 9 (different letters correspond to different numbers)?

Rebus. Solve the numerical rebus \(AAAA-BBB + SS-K = 1234\) (different letters correspond to different numbers, but the same letters each time correspond to the same numbers)

When Harvey was asked to come up with a problem for the mathematical Olympiad in Sunny City, he wrote a rebus (see the drawing). Can it be solved? (Different letters must match different numbers).

image

Alex laid out an example of an addition of numbers from cards with numbers on them and then swapped two cards. As you can see, the equality has been violated. Which cards did Alex rearrange?

image

In the line of numbers and signs \({}* 1 * 2 * 4 * 8 * 16 * 32 * 64 = 27\) position the signs “\(+\)” or “\(-\)” instead of the signs “\(*\)”, so that the equality becomes true.

The code of lock is a two-digit number. Ben forgot the code, but he remembers that the sum of the digits of this number, combined with their product, is equal to the number itself. Write all possible code options so that Ben could open the lock quickly.

Find the smallest four-digit number \(CEEM\) for which there exists a solution to the rebus \(MN + PORG = CEEM\). (The same letters correspond to the same numbers, different – different.)

Arrange brackets and arithmetic signs around these numbers so that the correct equality is obtained: \[\frac{1}{2}\quad \frac{1}{6}\quad \frac{1}{6009} \ = \ 2003.\]

At the end of the term, Billy wrote out his current singing marks in a row and put a multiplication sign between some of them. The product of the resulting numbers turned out to be equal to 2007. What is Billy’s term mark for singing? (The marks that he can get are between 2 and 5, where 5 is the highest mark).