a) In the construction in the figure, move two matches so that there are five identical squares created. b) From the new figure, remove 3 matches so that only 3 squares remain.
How many squares are shown in the picture?
Cut the shape (see the figure) into two identical pieces (coinciding when placed on top of one another).
There is a
The centres of all unit squares are marked in a
All of the points with whole number co-ordinates in a plane are plotted in one of three colours; all three colours are present. Prove that there will always be possible to form a right-angle triangle from these points so that its vertices are of three different colours.
A target consists of a triangle divided by three families of parallel lines into 100 equilateral unit triangles. A sniper shoots at the target. He aims at a particular equilateral triangle and either hits it or hits one of the adjacent triangles that share a side with the one he was aiming for. He can see the results of his shots and can choose when to stop shooting. What is the largest number of triangles that the sniper can guarantee he can hit exactly 5 times?
A game of ’Battleships’ has a fleet consisting of one
One corner square was cut from a chessboard. What is the smallest number of equal triangles that can be cut into this shape?
The city plan is a rectangle of