Problems

Age
Difficulty
Found: 22

The Hatter plays a computer game. There is a number on the screen, which every minute increases by 102. The initial number is 123. The Hatter can change the order of the digits of the number on the screen at any moment. His aim is to keep the number of the digits on the screen below four. Can he do it?

Show that in the game “Noughts and Crosses” the second player never wins if the first player is smart enough.

There is a chequered board of dimension \(10 \times 12\). In one go you are allowed to cross out any row or column if it contains at least one square which was not crossed out yet. The loser is the player who cannot make a move. Is there a winning strategy for any player?

Pathways in the Wonderland zoo make a equilateral triangles with middle lines drawn. A monkey has escaped from it’s cage. Two zoo caretakers are catching the monkey. Can zookeepers catch the monkey if all three of them are running only on pathways, the running speeds of the monkey and the zookeepers are equal, and they are all able to see each other?

There is a chequered board of dimension (a) \(9\times 10\), (b) \(9\times 11\). In one go you are allowed to cross out any row or column if it contains at least one square which was not crossed out yet. The loser is the player who cannot make a move. Is there a winning strategy for any player?

Alice and the Hatter play a game. Alice takes a coin in each hand: 2p coin and 5p coin, one coin per hand. Then she multiplies the value of the coin in the left hand by 4, 10, 12, or 26, and the value of the coin in the right hand by 7, 13, 21, or 35. Finally, she adds the two products together, and tells the result to the Hatter. To her surprise, the Hatter immediately knows in which hand she has the 2p coin. How does he do it?

The March Hare and the Dormouse are playing a game. A rook is placed on square a1 on a chessboard. In one go it is allowed to move the rook by any number of squares but only up or to the right. The winner is the one who places the rook on square h8. The Dormouse makes the first move. Who will win the game? (It is assumed that everybody is following the best possible strategy).

The March Hare made three piles of stones of 10, 15, and 20 stones respectively, and invited the Dormouse to play the following game. It is allowed to split any existing pile into two smaller ones in one go. The loser is the one who cannot make a move.

Alice and the Hatter decided to play another game. They found a field with exactly 2016 stones on it. In one go Alice picks 1 or 4 stones, while the Hatter picks 1 or 3 stones. The loser is the one who cannot make a move. Can Alice or the Hatter win irrespective of the other player’s strategy?

Tweedledum and Tweedledee play a game. They have written numbers 1, 2, 3, 4 in a circle. Tweedledum, who makes the first move, can add 1 to any two adjacent numbers; while Tweedledee is allowed to exchange any two adjacent numbers. Tweedledum wins if all the numbers become equal. Can Twedleedee prevent Tweedledum from winning if both must make a move every turn?