Let \(a,b,c >0\) be positive real numbers. Prove that \[(1+a)(1+b)(1+c)\geq 8\sqrt{abc}.\]
For a natural number \(n\) prove that \(n! \leq (\frac{n+1}{2})^n\), where \(n!\) is the factorial \(1\times 2\times 3\times ... \times n\).
Prove the Cauchy-Schwartz inequality: for a natural number \(n\) and real numbers \(a_1\), \(a_2\), ..., \(a_n\) and \(b_1\), \(b_2\), ..., \(b_n\) we have \[(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq (a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2).\]
For non-negative real numbers \(a,b,c\) prove that \[a^3+b^3+c^3 \geq \frac{(a+b+c)(a^2+b^2+c^2)}{3}\geq a^2b+b^2c+c^2a.\]
Prove Nesbitt’s inequality, which states that for positive real numbers \(a,b,c\) we have \[\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq \frac{3}{2}.\]