Problems

Age
Difficulty
Found: 16

In the number \(a = 0.12457 \dots\) the \(n\)th digit after the decimal point is equal to the digit to the left of the decimal point in the number. Prove that \(\alpha\) is an irrational number.

With a non-zero number, the following operations are allowed: \(x \rightarrow \frac{1+x}{x}\), \(x \rightarrow \frac{1-x}{x}\). Is it true that from every non-zero rational number one can obtain each rational number with the help of a finite number of such operations?

Find all functions \(f (x)\) defined for all positive \(x\), taking positive values and satisfying the equality \(f (x^y) = f (x)^f (y)\) for any positive \(x\) and \(y\).

At all rational points of the real line, integers are arranged. Prove that there is a segment such that the sum of the numbers at its ends does not exceed twice the number on its middle.

A number set \(M\) contains \(2003\) distinct positive numbers, such that for any three distinct elements \(a, b, c\) in \(M\), the number \(a^2 + bc\) is rational. Prove that we can choose a natural number \(n\) such that for any \(a\) in \(M\) the number \(a\sqrt{n}\) is rational.

A numeric set \(M\) containing 2003 distinct numbers is such that for every two distinct elements \(a, b\) in \(M\), the number \(a^2+ b\sqrt 2\) is rational. Prove that for any \(a\) in \(M\) the number \(q\sqrt 2\) is rational.

Prove the irrationality of the following numbers:

a) \(\sqrt{3}{17}\)

b) \(\sqrt{2} + \sqrt{3}\)

c) \(\sqrt{2} + \sqrt{3} + \sqrt{5}\)

d) \(\sqrt{3}{3} - \sqrt{2}\)

e) \(\cos 10^{\circ}\)

f) \(\tan 10^{\circ}\)

g) \(\sin 1^{\circ}\)

h) \(\log_{2}3\)