Problems

Age
Difficulty
Found: 62

In a parallelogram \(ABCD\), point \(E\) belongs to the side \(CD\) and point \(F\) belongs to the side \(BC\). Show that the total red area is the same as the total blue area:

In a square, the midpoints of its sides were marked and some segments were drawn. There is another square formed in the centre. Find its area, if the side of the square has length \(10\).

In a parallelogram \(ABCD\), point \(E\) belongs to the side \(AB\), point \(F\) belongs to the side \(CD\) and point \(G\) belongs to the side \(AD\). What is more, the marked red segments \(AE\) and \(CF\) have equal lengths. Prove that the total grey area is equal to the total black area.

Think of other shapes Robinson’s goat can graze without a wolf, or with a wolf tied nearby. What if Robinson managed to tame several wolves and used them as guard dogs? Can two tied wolves keep an untied goat in a triangle? Can you think of other shapes you can create with Robinson’s goat and wolves?

A rectangle is made up from six squares. Find side length of the largest square if side length of the smallest square is 1.

This shape below is made up from squares.

Find side length of the bottom square if side length of the smallest square is equal to 1.

You are given a convex quadrilateral. Is it always possible to cut out a parallelogram out of the quadrilateral such that three vertices of the new parallelogram are the vertices of the old quadrilateral?

a) There are six points on a plane. No matter which five points you choose you can cross them with two lines but one cannot find two lines which cross all six of them. Does such configuration exist?

(b) One extremely successful businesswoman is planning to build a garden in her country house. She wants to have 10 garden beds and several lanes built. She requested her architect to organize the garden in such a way that for every nine beds there are three lanes passing by them (for each garden bed out of these nine beds there is a lane among the three lanes which passes by it). On top of that she demanded that there should not be three lanes which pass by all 10 garden beds. How can the poor architect satisfy this requirement? All lanes have to be straight.

(c) A neighbour of the businesswoman is inspired by her exotic demands. He decides to surpass her on this field. The neighbour plans to build 55 garden beds. They have to be joined by several lanes in such a way that for every 54 garden beds you can find nine lanes crossing them (for each garden bed out of these 54 beds there is a lane among the nine lanes which crosses this bed). Can you help the colleague of the architect? Again all the lanes have to be straight.