Problems

Age
Difficulty
Found: 21

What is the maximum number of kings, that cannot capture each other, which can be placed on a chessboard of size \(8 \times 8\) cells?

On a table, there are five coins lying in a row: the middle one lies with a head facing upwards, and the rest lie with the tails side up. It is allowed to simultaneously flip three adjacent coins. Is it possible to make all five coins positioned with the heads side facing upwards with the help of several such overturns?

Is it possible to draw five lines from one point on a plane so that there are exactly four acute angles among the angles formed by them? Angles between not only neighboring rays, but between any two rays, can be considered.

100 fare evaders want to take a train, consisting of 12 coaches, from the first to the 76th station. They know that at the first station two ticket inspectors will board two coaches. After the 4th station, in the time between each station, one of the ticket inspectors will cross to a neighbouring coach. The ticket inspectors take turns to do this. A fare evader can see a ticket inspector only if the ticket inspector is in the next coach or the next but one coach. At each station each fare evader has time to run along the platform the length of no more than three coaches – for example at a station a fare evader in the 7th coach can run to any coach between the 4th and 10th inclusive and board it. What is the largest number of fare evaders that can travel their entire journey without ever ending up in the same coach as one of the ticket inspectors, no matter how the ticket inspectors choose to move? The fare evaders have no information about the ticket inspectors beyond that which is given here, and they agree their strategy before boarding.

What weights can three weights have so that they can weigh any integer number of kilograms from 1 to 10 on weighing scales (weights can be put on both cups)? Give an example.

Find the largest number of colours in which you can paint the edges of a cube (each edge with one colour) so that for each pair of colours there are two adjacent edges coloured in these colours. Edges are considered to be adjacent if they have a common vertex.

There are 40 identical cords. If you set any cord on fire on one side, it burns, and if you set it alight on the other side, it will not burn. Ahmed arranges the cords in the form of a square (see the figure below, each cord makes up a side of a cell). Then, Helen arranges 12 fuses. Will Ahmed be able to lay out the cords in such a way that Helen will not be able to burn all of them?

A box contains 111 red, blue, green, and white marbles. It is known that if we remove 100 marbles from the box, without looking, we will always have removed at least one marble of each colour. What is the minimum number of marbles we need to remove to guarantee that we have removed marbles of 3 different colours?

At a contest named “Ah well, monsters!”, 15 dragons stand in a row. Between neighbouring dragons the number of heads differs by 1. If the dragon has more heads than both of his two neighbors, he is considered cunning, if he has less than both of his neighbors – strong, the rest (including those standing at the edges) are considered ordinary. In the row there are exactly four cunning dragons – with 4, 6, 7 and 7 heads and exactly three strong ones – with 3, 3 and 6 heads. The first and last dragons have the same number of heads.

a) Give an example of how this could occur.

b) Prove that the number of heads of the first dragon in all potential examples is the same.

In a \(10 \times 10\) square, all of the cells of the upper left \(5 \times 5\) square are painted black and the rest of the cells are painted white. What is the largest number of polygons that can be cut from this square (on the boundaries of the cells) so that in every polygon there would be three times as many white cells than black cells? (Polygons do not have to be equal in shape or size.)