Problems

Age
Difficulty
Found: 17

There are some incorrect weighing scales, a bag of cereal and a correct weight of 1 kg. How can you weigh on these scales 1 kg of cereals?

In a physics club, the teacher created the following experiment. He spread out 16 weights of weight 1, 2, 3, ..., 16 grams onto weighing scales, so that one of the bowls outweighed the other. Fifteen students in turn left the classroom and took with them one weight each, and after each student’s departure, the scales changed their position and outweighed the opposite bowl of the scales. What weight could remain on the scales?

A row of 4 coins lies on the table. Some of the coins are real and some of them are fake (the ones which weigh less than the real ones). It is known that any real coin lies to the left of any false coin. How can you determine whether each of the coins on the table is real or fake, by weighing once using a balance scale?

A set of weights has the following properties: It contains \(5\) weights, which are all different in weight. For any two weights, there are two other weights of the same total weight. What is the smallest number of weights that can be in this set?

At the vertices of the hexagon \(ABCDEF\) (see Fig.) There were 6 identical balls: at \(A\) – one with mass 1 g, at \(B\) – 2 g, ..., at \(F\) – 6 g. Callum changed the places of two balls in opposite vertices. A set of weighing scales with 2 plates is available, which let you know which plate contains the balls of greater mass. How, in one weighing, can it be determined which balls were rearranged?

image

Vincent makes small weights. He made 4 weights which should have masses (in grams) of 1, 3, 4 and 7, respectively. However, he made a mistake and one of these weights has the wrong mass. By weighing them twice using balance scales (without the use of weights other than those mentioned) can he find which weight has the wrong mass?

There are some coins on a table. One of these coins is fake (has a different weight than a real coin). By weighing them twice using balance scales, determine whether the fake coin is lighter or heavier than a real coin (you don’t need to find the fake coin) if the number of coins is: a) 100; b) 99; c) 98?

27 coins are given, of which one is a fake, and it is known that a counterfeit coin is lighter than a real one. How can the counterfeit coin be found from 3 weighings on the scales without weights?

In a basket there are 13 apples. There are scales, with which you can find out the total weight of any two apples. Think of a way to find out from 8 weighings the total weight of all the apples.

What weights can three weights have so that they can weigh any integer number of kilograms from 1 to 10 on weighing scales (weights can be put on both cups)? Give an example.