Problems

Age
Difficulty
Found: 9

In any group of 10 children, out of a total of 60 pupils, there will be three who are in the same class. Will it always be the case that amongst the 60 pupils there will be: 1) 15 classmates? 2) 16 classmates?

Peter has some coins in his pocket. If Peter pulls \(3\) coins from his pocket, without looking, there will always be a £1 coin among them. If Peter pulls \(4\) coins from his pocket, without looking, there will always be a £2 coin among them. Peter pulls \(5\) coins from his pocket. Identify these coins.

The \(KUB\) is a cube. Prove that the ball, \(CIR\), is not a cube. (\(KUB\) and \(CIR\) are three-digit numbers, where different letters denote different numbers).

The order of books on a shelf is called wrong if no three adjacent books are arranged in order of height (either increasing or decreasing). How many wrong orders is it possible to construct from \(n\) books of different heights, if: a) \(n = 4\); b) \(n = 5\)?

In the first term of the year Daniel received five grades in mathematics with each of them being on a scale of 1 to 5, and the most common grade among them was a 5 . In this case it turned out that the median of all his grades was 4, and the arithmetic mean was 3.8. What grades could Daniel have?

Is it possible to place the numbers \(1, 2,\dots 12\) around a circle so that the difference between any two adjacent numbers is 3, 4, or 5?

In March 2015 a teacher ran 11 sessions of a maths club. Prove that if no sessions were run on Saturdays or Sundays there must have been three days in a row where a session of the club did not take place. The 1st March 2015 was a Sunday.