In any group of 10 children, out of a total of 60 pupils, there will be three who are in the same class. Will it always be the case that amongst the 60 pupils there will be: 1) 15 classmates? 2) 16 classmates?
Find the smallest four-digit number \(CEEM\) for which there exists a solution to the rebus \(MN + PORG = CEEM\). (The same letters correspond to the same numbers, different – different.)
A square napkin was folded in half, the resulting rectangle was then folded in half again (see the figure). The resulting square was then cut with scissors (in a straight line). Could the napkin have been broken up a) into 2 parts? b) into 3 parts? c) into 4 parts? d) into 5 parts? If yes – illustrate such a cut, if not – write the word “no”.
We are given a table of size \(n \times n\). \(n-1\) of the cells in the table contain the number \(1\). The remainder contain the number \(0\). We are allowed to carry out the following operation on the table:
1. Pick a cell.
2. Subtract 1 from the number in that cell.
3. Add 1 to every other cell in the same row or column as the chosen cell.
Is it possible, using only this operation, to create a table in which all the cells contain the same number?
Peter has some coins in his pocket. If Peter pulls \(3\) coins from his pocket, without looking, there will always be a £1 coin among them. If Peter pulls \(4\) coins from his pocket, without looking, there will always be a £2 coin among them. Peter pulls \(5\) coins from his pocket. Identify these coins.
One day, Claudia, Sofia and Freia noticed that they brought the same toy cars to kindergarten. Claudia has a car with a trailer, a small car and a green car without a trailer. Sofia has a car without a trailer and a small green one with a trailer, and Freia has a big car and a small blue car with a trailer. What kind of car (in terms of colour, size and availability of a trailer) did all of the girls bring to the kindergarten? Explain the answer.
The \(KUB\) is a cube. Prove that the ball, \(CIR\), is not a cube. (\(KUB\) and \(CIR\) are three-digit numbers, where different letters denote different numbers).
How many different four-digit numbers, divisible by 4, can be made up of the digits 1, 2, 3 and 4,
a) if each number can occur only once?
b) if each number can occur several times?
The order of books on a shelf is called wrong if no three adjacent books are arranged in order of height (either increasing or decreasing). How many wrong orders is it possible to construct from \(n\) books of different heights, if: a) \(n = 4\); b) \(n = 5\)?
Prove that the 13th day of the month is more likely to occur on a Friday than on other days of the week. It is assumed that we live in the Gregorian style calendar.