Find all functions \(f (x)\) such that \(f (2x + 1) = 4x^2 + 14x + 7\).
Two different numbers \(x\) and \(y\) (not necessarily integers) are such that \(x^2-2000x=y^2-2000y\). Find the sum of \(x\) and \(y\).
Prove that for any natural number \(a_1> 1\) there exists an increasing sequence of natural numbers \(a_1, a_2, a_3, \dots\), for which \(a_1^2+ a_2^2 +\dots+ a_k^2\) is divisible by \(a_1+ a_2+\dots+ a_k\) for all \(k \geq 1\).
The quadratic trinomials \(f (x)\) and \(g (x)\) are such that \(f' (x) g' (x) \geq | f (x) | + | g (x) |\) for all real \(x\). Prove that the product \(f (x) g (x)\) is equal to the square of some trinomial.
A cubic polynomial \(f (x)\) is given. Let’s find a group of three different numbers \((a, b, c)\) such that \(f (a)= b\), \(f (b) = c\) and \(f (c) = a\). It is known that there were eight such groups \([a_i, b_i, c_i]\), \(i = 1, 2, \dots , 8\), which contains 24 different numbers. Prove that among eight numbers of the form \(a_i + b_i + c_i\) at least three are different.
The expression \(ax^2+bx+c\) is an exact fourth power for all integers \(x\). Prove that \(a=b=0\).