Problems

Age
Difficulty
Found: 8

Prove that the following facts are true for any graph:

a) The sum of degrees of all vertices is equal to twice the number of edges (and therefore it is even);

b) The number of vertices of odd degree is even.

In the Land of Linguists live \(m\) people, who have opportunity to speak \(n\) languages. Each person knows exactly three languages, and the sets of known languages may be different for different people. It is known that \(k\) is the maximum number of people, any two of whom can talk without interpreters. It turned out that \(11n \leq k \leq m/2\). Prove that then there are at least \(mn\) pairs of people in the country who will not be able to talk without interpreters.

Let’s compute the infinite sum: \[1+2 + 4 + 8 + 16 + ... + 2^n + ... = c\] Observe that \(1+2+4+8+... = 1 + 2(1+2+4+8+16+...)\), namely \(c = 1+2c\), then it follows that \[c = 1+2+4+8+... = -1.\]

There are \(16\) cities in the kingdom. Prove that it is not possible to build a system of roads in such a way that one can get from any city to any other without passing through more than one city on the way, and with at most four roads coming out of each city.

There are \(16\) cities in the kingdom. Prove that it is possible to build a system of roads in such a way that one can get from any city to any other without passing through more than one city on the way, and with at most five roads coming out of each city.

Show that a bipartite graph with \(n\) vertices cannot have more than \(\frac{n^2}{4}\) edges.

In a graph \(G\), we call a matching any choice of edges in \(G\) in such a way that all vertices have only one edge among chosen connected to them. A perfect matching is a matching which is arranged on all vertices of the graph.
Let \(G\) be a graph with \(2n\) vertices and all the vertices have degree at least \(n\) (the number of edges exiting the vertex). Prove that one can choose a perfect matching in \(G\).