Problems

Age
Difficulty
Found: 1

Definition. Let the function \(f (x, y)\) be valid at all points of a plane with integer coordinates. We call a function \(f (x, y)\) harmonic if its value at each point is equal to the arithmetic mean of the values of the function at four neighbouring points, that is: \[f (x, y) = 1/4 (f (x + 1, y) + f (x-1, y) + f(x, y + 1) + f (x, y-1)).\] Let \(f(x, y)\) and \(g (x, y)\) be harmonic functions. Prove that for any \(a\) and \(b\) the function \(af (x, y) + bg (x, y)\) is also harmonic.