On the sides \(AB\), \(BC\) and \(AC\) of the triangle \(ABC\) points \(P\), \(M\) and \(K\) are chosen so that the segments \(AM\), \(BK\) and \(CP\) intersect at one point and \[\vec{AM} + \vec{BK}+\vec{CP} = 0\] Prove that \(P\), \(M\) and \(K\) are the midpoints of the sides of the triangle \(ABC\).
In the acute-angled triangle \(ABC\), the heights \(AA_1\) and \(BB_1\) are drawn. Prove that \(A_1C \times BC = B_1C \times AC\).
Let \(AA_1\) and \(BB_1\) be the heights of the triangle \(ABC\). Prove that the triangles \(A_1B_1C\) and \(ABC\) are similar.
A unit square is divided into \(n\) triangles. Prove that one of the triangles can be used to completely cover a square with side length \(\frac{1}{n}\).
Let \(ABC\) and \(A_1B_1C_1\) be two triangles with the following properties: \(AB = A_1B_1\), \(AC = A_1C_1\), and angles \(\angle BAC = \angle B_1A_1C_1\). Then the triangles \(ABC\) and \(A_1B_1C_1\) are congruent.
In the triangle \(\triangle ABC\) the sides \(AC\) and \(BC\) are equal. Prove that the angles \(\angle CAB\) and \(\angle CBA\) are equal.
Let \(ABC\) and \(DEF\) be such triangles that angles \(\angle ABC = \angle DEF\), \(\angle ACB = \angle DFE\). Prove that the triangles \(ABC\) and \(DEF\) are similar.
The medians \(AD\) and \(BE\) of the triangle \(ABC\) intersect at the point \(F\). Prove that the triangles \(AFB\) and \(DFE\) are similar. What is their similarity coefficient?
In a triangle \(\triangle ABC\), the angle \(\angle B = 90^{\circ}\) . The altitude from point \(B\) intersects \(AC\) at \(D\). We know the lengths \(AD = 9\) and \(CD = 25\). What is the length \(BD\)?
Let \(ABC\) and \(DEF\) be two triangles such that \(\angle ACB = \angle DFE\) and \(\frac{DF}{AC} = \frac{EF}{BC}\). Prove that triangles \(ABC\) and \(DEF\) are similar.