Prove that if the irreducible rational fraction \(p/q\) is a root of the polynomial \(P (x)\) with integer coefficients, then \(P (x) = (qx - p) Q (x)\), where the polynomial \(Q (x)\) also has integer coefficients.
Prove that the infinite decimal \(0.1234567891011121314 \dots\) (after the decimal point, all of the natural numbers are written out in order) is an irrational number.
Are there any irrational numbers \(a\) and \(b\) such that the degree of \(a^b\) is a rational number?
Let the number \(\alpha\) be given by the decimal:
a) \(0.101001000100001000001 \dots\);
b) \(0.123456789101112131415 \dots\).
Will this number be rational?
One of the roots of the equation \(x^2 + ax + b = 0\) is \(1 + \sqrt 3\). Find \(a\) and \(b\) if you know that they are rational.
For what natural numbers \(a\) and \(b\) is the number \(\log_{a} b\) rational?
Prove that for \(x \ne \pi n\) (\(n\) is an integer) \(\sin x\) and \(\cos x\) are rational if and only if the number \(\tan x/2\) is rational.
A square grid on the plane and a triangle with vertices at the nodes of the grid are given. Prove that the tangent of any angle in the triangle is a rational number.
Prove that there is at most one point of an integer lattice on a circle with centre at \((\sqrt 2, \sqrt 3)\).
Prove that if \((p, q) = 1\) and \(p/q\) is a rational root of the polynomial \(P (x) = a_nx^n + \dots + a_1x + a_0\) with integer coefficients, then
a) \(a_0\) is divisible by \(p\);
b) \(a_n\) is divisible by \(q\).