Arrows are placed on the sides of a polygon. Prove that the number of vertices in which two arrows converge is equal to the number of vertices from which two arrows emerge.
a) Prove that the axes of symmetry of a regular polygon intersect at one point.
b) Prove that the regular \(2n\)-gon has a centre of symmetry.
a) The convex \(n\)-gon is cut by diagonals that do not cross to form triangles. Prove that the number of these triangles is equal to \(n - 2\).
b) Prove that the sum of the angles at the vertices of a convex \(n\)-gon is \((n - 2) \times 180^{\circ}\).