Does there exist a function \(f (x)\) defined for all \(x \in \mathbb{R}\) and for all \(x, y \in \mathbb{R}\) satisfying the inequality \(| f (x + y) + \sin x + \sin y | < 2\)?
Does there exist a real number \({\alpha}\) such that the number \(\cos {\alpha}\) is irrational, and all the numbers \(\cos 2{\alpha}\), \(\cos 3{\alpha}\), \(\cos 4{\alpha}\), \(\cos 5{\alpha}\) are rational?
Calculate \(\int_0^{\pi/2} (\sin^2 (\sin x) + \cos^2 (\cos x))\,dx\).
Prove that if you rotate through an angle of \(\alpha\) with the center at the origin, the point with the coordinates \((x, y)\), it goes to the point \((x \cos \alpha - y \sin \alpha, x \sin \alpha + y \cos \alpha)\).
Prove the irrationality of the following numbers:
a) \(\sqrt{3}{17}\)
b) \(\sqrt{2} + \sqrt{3}\)
c) \(\sqrt{2} + \sqrt{3} + \sqrt{5}\)
d) \(\sqrt{3}{3} - \sqrt{2}\)
e) \(\cos 10^{\circ}\)
f) \(\tan 10^{\circ}\)
g) \(\sin 1^{\circ}\)
h) \(\log_{2}3\)
Prove that for \(x \ne \pi n\) (\(n\) is an integer) \(\sin x\) and \(\cos x\) are rational if and only if the number \(\tan x/2\) is rational.
A square grid on the plane and a triangle with vertices at the nodes of the grid are given. Prove that the tangent of any angle in the triangle is a rational number.
Find the largest and smallest values of the functions
a) \(f_1 (x) = a \cos x + b \sin x\); b) \(f_2 (x) = a \cos^2x + b \cos x \sin x + c \sin^2x\).
Prove that the function \(\cos \sqrt {x}\) is not periodic.
Prove the formulae: \(\arcsin (- x) = - \arcsin x\), \(\arccos (- x) = \pi - \arccos x\).