Problems

Age
Difficulty
Found: 3

Two circles touch at a point \(A\). A common (outer) tangent touching the circles at points \(C\) and \(B\) is drawn. Prove that \(\angle CAB = 90^{\circ}\).

Two circles \(S_1\) and \(S_2\) with centers \(O_1\) and \(O_2\) touch at the point \(A\). A straight line intersects \(S_1\) at \(A_1\) and \(S_2\) at the point \(A_2\). Prove that \(O_1A_1 \parallel O_2A_2\).

From a point \(A\) the tangents \(AB\) and \(AC\) are drawn to a circle with center \(O\). Prove that if from the point \(M\) the segment \(AO\) is visible at an angle of \(90^{\circ}\), then the segments \(OB\) and \(OC\) are also visible from it at equal angles.