There are one hundred natural numbers, they are all different, and sum up to 5050. Can you find those numbers? Are they unique, or is there another bunch of such numbers?
Find the sum \(1/3 + 2/3 + 2^2/3 + 2^3/3 + \dots + 2^{1000}/3\).
The sequence of numbers \(a_1, a_2, \dots\) is given by the conditions \(a_1 = 1\), \(a_2 = 143\) and
for all \(n \geq 2\).
Prove that all members of the sequence are integers.
How many integers are there from 0 to 999999, in the decimal notation of which there are no two identical numbers next to each other?
A road of length 1 km is lit with streetlights. Each streetlight illuminates a stretch of road of length 1 m. What is the maximum number of streetlights that there could be along the road, if it is known that when any single streetlight is extinguished the street will no longer be fully illuminated?
On an infinitely long strip of paper, we write an endless row of digits.
We start by writing \(1,2,3,4\). After that, each new digit is chosen like this: add the previous four digits and write down only the last digit of that sum.
So the beginning looks like \(1234096\dots\).
Will the four digits \(8123\) ever appear next to each other somewhere in this endless row?
In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?
Suppose that there are 15 prime numbers forming an arithmetic progression with a difference of \(d\). Prove that \(d >30,000\).
The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).
Is it true that this sequence is limited?
Let the sequences of numbers \(\{a_n\}\) and \(\{b_n\}\), that are associated with the relation \(\Delta b_n = a_n\) (\(n = 1, 2, \dots\)), be given. How are the partial sums \(S_n\) of the sequence \(\{a_n\}\) \(S_n = a_1 + a_2 + \dots + a_n\) linked to the sequence \(\{b_n\}\)?