Problems

Age
Difficulty
Found: 37

There are one hundred natural numbers, they are all different, and sum up to 5050. Can you find those numbers? Are they unique, or is there another bunch of such numbers?

The function \(f (x)\) is defined on the positive real \(x\) and takes only positive values. It is known that \(f (1) + f (2) = 10\) and \(f(a+b) = f(a) + f(b) + 2\sqrt{f(a)f(b)}\) for any \(a\) and \(b\). Find \(f (2^{2011})\).

A road of length 1 km is lit with streetlights. Each streetlight illuminates a stretch of road of length 1 m. What is the maximum number of streetlights that there could be along the road, if it is known that when any single streetlight is extinguished the street will no longer be fully illuminated?

On an infinitely long strip of paper, we write an endless row of digits.

We start by writing \(1,2,3,4\). After that, each new digit is chosen like this: add the previous four digits and write down only the last digit of that sum.

So the beginning looks like \(1234096\dots\).

Will the four digits \(8123\) ever appear next to each other somewhere in this endless row?

In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?

The Babylonian algorithm for deducing \(\sqrt{2}\). The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + 2/x_n)\) (\(n \geq 1\)).

Prove that \(\lim\limits_{n\to\infty} x_n = \sqrt{2}\).

What will the sequence from the previous problem 61297 be converging towards if we choose \(x_1\) as equal to \(-1\) as the initial condition?