Problems

Age
Difficulty
Found: 12

Two different numbers \(x\) and \(y\) (not necessarily integers) are such that \(x^2-2000x=y^2-2000y\). Find the sum of \(x\) and \(y\).

Prove the following formulae are true: \[\begin{aligned} a^{n + 1} - b^{n + 1} &= (a - b) (a^n + a^{n-1}b + \dots + b^n);\\ a^{2n + 1} + b^{2n + 1} &= (a + b) (a^{2n} - a^{2n-1}b + a^{2n-2}b^2 - \dots + b^{2n}). \end{aligned}\]

Find the coefficient of \(x\) for the polynomial \((x - a) (x - b) (x - c) \dots (x - z)\).

Solving the problem: “What is the solution of the expression \(x^{2000} + x^{1999} + x^{1998} + 1000x^{1000} + 1000x^{999} + 1000x^{998} + 2000x^3 + 2000x^2 + 2000x + 3000\) (\(x\) is a real number) if \(x^2 + x + 1 = 0\)?”, Vasya got the answer of 3000. Is Vasya right?

Let \(P(x)\) be a polynomial with integral coefficients. Suppose there exist four distinct integers \(a,b,c,d\) with \(P(a) = P(b) = P(c) = P(d) = 5\). Prove that there is no integer \(k\) with \(P(k) = 8\).

For which natural number \(n\) is the polynomial \(1+x^2+x^4+\dots+x^{2n-2}\) divisible by the polynomial \(1 +x+x^2+\dots+x^{n-1}\)?