Problems

Age
Difficulty
Found: 11

Sometimes life can make us do the craziest of things. In this problem you just need to find out how one can cut an \(8\times8\) chessboard into 20 pieces each having the same perimeter and consisting of a whole number of cells.

Jennifer draws a hexagon, and a line passing through two of its vertices. It turns out one of the figures in which the original hexagon is divided is a heptagon. Show an example of a hexagon and a line for which it is true.

Can Jennifer draw an octagon and a line passing through two of its vertices in such a way that this line cuts a 10-gon from it?

Two people had two square cakes. Each person made 2 straight cuts from edge to edge on their cake. After doing this, one person ended up with three pieces, and the other with four. How could this be?

How can you divide a pancake with three straight sections into 4, 5, 6, 7 parts?

What is the maximum number of pieces that a round pancake can be divided into with three straight cuts?

In Neverland, there are magic laws of nature, one of which reads: “A magic carpet will fly only when it has a rectangular shape.” Frosty the Snowman had a magic carpet measuring \(9 \times 12\). One day, the Grinch crept up and cut off a small rug of size \(1 \times 8\) from this carpet. Frosty was very upset and wanted to cut off another \(1 \times 4\) piece to make a rectangle of \(8 \times 12\), but the Wise Owl suggested that he act differently. Instead he cut the carpet into three parts, of which a square magic carpet with a size of \(10 \times 10\) could be sown with magic threads. Can you guess how the Wise Owl restructured the ruined carpet?

During the ball every young man danced the waltz with a girl, who was either more beautiful than the one he danced with during the previous dance, or more intelligent, but most of the men (at least 80%) – with a girl who was at the same time more beautiful and more intelligent. Could this happen? (There was an equal number of boys and girls at the ball.)

On a plane there is a square, and invisible ink is dotted at a point \(P\). A person with special glasses can see the spot. If we draw a straight line, then the person will answer the question of on which side of the line does \(P\) lie (if \(P\) lies on the line, then he says that \(P\) lies on the line).

What is the smallest number of such questions you need to ask to find out if the point \(P\) is inside the square?

Due to a mistake in the bakery, a cake that was supposed to be shaped as two concentric pieces (like on the right diagram below) came out like the left diagram below. Find the smallest number of pieces the cake should be cut into in order to rearrange the pieces into the cake on the right side of the picture.

image

Note that the cake is \(\textit{not}\) tiered like a wedding cake, but is shaped like a cylinder with a flat top. Curved cuts are allowed.