Prove that for a monotonically increasing function \(f (x)\) the equations \(x = f (f (x))\) and \(x = f (x)\) are equivalent.
You are mixing four magic potions, and you choose how much of each one to use. Let \(a\), \(b\), \(c\), and \(d\) be the amounts of the four potions you pour in, each chosen between \(0\) and \(1\) liter. The wizard tells you that the magic power of your mix is given by the formula \[a + b + c + d - ab - bc - cd - da.\] What is the largest magic power you can create?
The function \(f(x)\) on the interval \([a, b]\) is equal to the maximum of several functions of the form \(y = C \times 10^{- | x-d |}\) (where \(d\) and \(C\) are different, and all \(C\) are positive). It is given that \(f (a) = f (b)\). Prove that the sum of the lengths of the sections on which the function increases is equal to the sum of the lengths of the sections on which the function decreases.