The point \(A\) is fixed on a circle. Find the locus of the point \(X\) which divides the chords that end at point \(A\) in a \(1:2\) ratio, starting from the point \(A\).
Prove that, when a circle is translated it becomes a circle.
Inside the rectangle \(ABCD\), the point \(E\) is taken. Prove that there exists a convex quadrilateral with perpendicular diagonals of lengths \(AB\) and \(BC\) whose sides are equal to \(AE\), \(BE\), \(CE\), \(DE\).
Prove that a circle transforms into a circle when it is rotated.
Prove that the triangle \(ABC\) is regular if and only if, by turning it by \(60^{\circ}\) (either clockwise or anticlockwise) with respect to point A, its vertex B moves to \(C\).
Two perpendicular straight lines are drawn through the centre of the square. Prove that their intersection points with the sides of a square form a square.
Prove that under homothety, a circle transforms into a circle.
Two circles touch at point \(K\). The line passing through point \(K\) intersects these circles at points \(A\) and \(B\). Prove that the tangents to the circles drawn through points \(A\) and \(B\) are parallel.
Let \(ABCD\) be a square and let \(P\) be any point in the plane. For each side of the square, take its midpoint. Reflect \(P\) about each of these four midpoints. Show that the four reflected points form the vertices of a square.
The points \(A\) and \(B\) and the line \(l\) are given on a plane. On which trajectory does the intersection point of the medians of the triangles \(ABC\) move, if the point \(C\) moves along the line \(l\)?