Problems

Age
Difficulty
Found: 3

There are \(100\) people in a room, and each person has at least one friend in the room. Prove that amongst them there are two people with the same number of friends in the room (we don’t count being friends with oneself).

Jamie has a bag full of cards, where each card has a whole number written on it. How many cards must Jamie take from the bag to be certain that, among the cards chosen, there are at least two numbers whose average is also a whole number? Recall that to calculate the average of two numbers, we add them together and then divide by two.

We make a long list of numbers in the following way. We start with \(1\) and \(1\). After that, each new number is the last digit of the sum of the two numbers right before it. For example, the beginning of the list is \[1,\,1,\,2,\,3,\,5,\,8,\,3,\,1,\,4,\ldots\]

Show that, if we keep making numbers like this forever, the list must eventually start repeating in a loop.