Does there exist an irreducible tiling with \(1\times2\) rectangles of
(a) \(4\times 6\) rectangle;
(b) \(6\times 6\) rectangle?
Irreducibly tile a floor with \(1\times2\) tiles in a room that is
(a) \(5\times8\); (b) \(6\times8\).
Having mastered tiling small rooms, Robinson wondered if he could tile big spaces, and possibly very big spaces. He wondered if he could tile the whole plane. He started to study the tiling, which can be continued infinitely in any direction. Can you help him with it?
Tile the whole plane with the following shapes:
Robinson Crusoe was taking seriously the education of Friday, his friend. Friday was very good at maths, and one day he cut 12 nets out of hardened goat skins. He claimed that it was possible to make a cube out of each net. Robinson looked at the patterns, and after some considerable thought decided that he was able to make cubes from all the nets except one. Can you figure out which net cannot make a cube?
It is known that it is possible to cover the plane with any cube’s net. (You will see it in the film that will be shown at the end of this session). But Robinson, unfortunately, lived on an uninhabited island in the 19th century, and did not know about the film. Try to help him to figure out how to cover the plane with nets \(\#2\), \(\#6\), and \(\#8\) from the previous exercise.
Remove a \(1 \times 1\) square from the corner of a \(4 \times 4\) square. Can this shape be dissected into \(3\) congruent parts?
Can a \(5\times5\) square checkerboard be covered by \(1\times2\) dominoes?
Can you cover a \(10 \times 10\) board using only \(T\)-shaped tetraminoes?
At the disposal of a tile layer there are 10 identical tiles, each of which consists of 4 squares and has the shape of the letter L (all tiles are oriented the same way). Can he make a rectangle with a size of \(5 \times 8\)? (The tiles can be rotated, but you cannot turn them over). For example, the figure shows the wrong solution: the shaded tile is incorrectly oriented.
What is the smallest number of ‘L’ shaped ‘corners’ out of 3 squares that can be marked on an \(8\times 8\) square grid, so that no more ’corners’ would fit?