Think of other shapes Robinson’s goat can graze without a wolf, or with a wolf tied nearby. What if Robinson managed to tame several wolves and used them as guard dogs? Can two tied wolves keep an untied goat in a triangle? Can you think of other shapes you can create with Robinson’s goat and wolves?
a) There are six points on a plane. No matter which five points you choose you can cross them with two lines but one cannot find two lines which cross all six of them. Does such configuration exist?
(b) One extremely successful businesswoman is planning to build a garden in her country house. She wants to have 10 garden beds and several lanes built. She requested her architect to organize the garden in such a way that for every nine beds there are three lanes passing by them (for each garden bed out of these nine beds there is a lane among the three lanes which passes by it). On top of that she demanded that there should not be three lanes which pass by all 10 garden beds. How can the poor architect satisfy this requirement? All lanes have to be straight.
(c) A neighbour of the businesswoman is inspired by her exotic demands. He decides to surpass her on this field. The neighbour plans to build 55 garden beds. They have to be joined by several lanes in such a way that for every 54 garden beds you can find nine lanes crossing them (for each garden bed out of these 54 beds there is a lane among the nine lanes which crosses this bed). Can you help the colleague of the architect? Again all the lanes have to be straight.
a) Find the locus of the points that are equidistant from two parallel lines.
b) Find the locus of the points that are equidistant from two intersecting lines.
Find the locus of the midpoints of the segments, the ends of which are found on two given parallel lines.
The triangle \(ABC\) is given. Find the locus of the point \(X\) satisfying the inequalities \(AX \leq CX \leq BX\).
Find the locus of the points \(X\) such that the tangents drawn from \(X\) to a given circle have a given length.
The point \(A\) is fixed on a circle. Find the locus of the point \(X\) which divides the chords that end at point \(A\) in a \(1:2\) ratio, starting from the point \(A\).
Let \(O\) be the center of the rectangle \(ABCD\). Find the geometric points of \(M\) for which \(AM \geq OM, BM \geq OM\), \(CM \geq OM\), and \(DM \geq OM\).