Problems

Age
Difficulty
Found: 10

Two people toss a coin: one tosses it 10 times, the other – 11 times. What is the probability that the second person’s coin showed heads more times than the first?

Three friends decide, by a coin toss, who goes to get the juice. They have one coin. How do they arrange coin tosses so that all of them have equal chances to not have to go and get the juice?

For the anniversary of the London Mathematical Olympiad, the mint coined three commemorative coins. One coin turned out correctly, the second coin on both sides had two heads, and the third had tails on both sides. The director of the mint, without looking, chose one of these three coins and tossed it at random. She got heads. What is the probability that the second side of this coin also has heads?

In a convex hexagon, independently of each other, two random diagonals are chosen. Find the probability that these diagonals intersect inside the hexagon (inside – that is, not at the vertex).

The shooter shoots at 3 targets until he shoots everything. The probability of a hit with one shot is \(p\).

a) Find the probability that he needs exactly 5 shots.

b) Find the mathematical expectation of the number of shots.

There is an elastic band and glass beads: four identical red ones, two identical blue ones and two identical green ones. It is necessary to string all eight beads on the elastic band in order to get a bracelet. How many different bracelets can be made so that beads of the same colour are not next to each other? (Assume that there is no buckle, and the knot on the elastic is invisible).

The television game “What? Where? When?” consists of a team of “experts” trying to solve 13 questions (or sectors), numbered from 1 to 13, that are thought up and sent in by the viewers of the programme. Envelopes with the questions are selected in turn in random order with the help of a spinning top with an arrow. If this sector has already come up previously, and the envelope is no longer there, then the next clockwise sector is played. If it is also empty, then the next one is played, etc., until there is a non-empty sector.

Before the break, the players played six sectors.

a) What is more likely: that sector number 1 has already been played or that sector number 8 has already been plated?

b) Find the probability that, before the break, six sectors with numbers from 1 to 6 were played consecutively.

In one box, there are two pies with mushrooms, in another box there are two with cherries and in the third one, there is one with mushrooms and one with cherries. The pies look and weigh the same, so it’s not known what is in each one. The grandson needs to take one pie to school. The grandmother wants to give him a pie with cherries, but she is confused herself and can only determine the filling by breaking the pie, but the grandson does not want a broken pie, he wants a whole one.

a) Show that the grandmother can act so that the probability of giving the grandson a whole pie with cherries will be equal to \(2/3\).

b) Is there a strategy in which the probability of giving the grandson a whole pie with cherries is higher than \(2/3\)?

There were 50 white and black crows sitting on a birch, and the number of black crows was not less than the number of whites. On the oak, there too were white and black crows, and there were 50 of them in total. On the oak, the number of black crows was also not less than the number of white ones. It could be that there was the same number of black and white crows, or maybe even there was one black crow less than white crows. One random crow flew from the birch to the oak, and after a while another random crow (maybe the same one) flew from the oak to the birch. Which is more probable: that the number of white crows on the birch is the same as it was at first, or that it has changed?

In a tournament, 100 wrestlers are taking part, all of whom have different strengths. In any fight between two wrestlers, the one who is stronger always wins. In the first round the wrestlers broke into random pairs and fought each other. For the second round, the wrestlers once again broke into random pairs of rivals (it could be that some pairs will repeat). The prize is given to those who win both matches. Find:

a) the smallest possible number of tournament winners;

b) the mathematical expectation of the number of tournament winners.