Every evening Ross arrives at a random time to the bus stop. Two bus routes stop at this bus stop. One of the routes takes Ross home, and the other takes him to visit his friend Rachel. Ross is waiting for the first bus and depending on which bus arrives, he goes either home or to his friend’s house. After a while, Ross noticed that he is twice as likely to visit Rachel than to be at home. Based on this, Ross concludes that one of the buses runs twice as often as the other. Is he right? Can buses run at the same frequency when the condition of the task is met? (It is assumed that buses do not run randomly, but on a certain schedule).
Three friends decide, by a coin toss, who goes to get the juice. They have one coin. How do they arrange coin tosses so that all of them have equal chances to not have to go and get the juice?
How many are there six-digit numbers that are divisible by \(5\)?
Write at random a two-digit number. What is the probability that the sum of the digits of this number is 5?
There are three boxes, in each of which there are balls numbered from 0 to 9. One ball is taken from each box. What is the probability that
a) three ones were taken out;
b) three equal numbers were taken out?
A player in the card game Preferans has 4 trumps, and the other 4 are in the hands of his two opponents. What is the probability that the trump cards are distributed a) \(2: 2\); b) \(3: 1\); c) \(4: 0\)?
Prove that the 13th day of the month is more likely to occur on a Friday than on other days of the week. It is assumed that we live in the Gregorian style calendar.
Hannah and Emma have three coins. On different sides of one coin there are scissors and paper, on the sides of another coin – a rock and scissors, on the sides of the third – paper and a rock. Scissors defeat paper, paper defeats rock and rock wins against scissors. First, Hannah chooses a coin, then Emma, then they throw their coins and see who wins (if the same image appears on both, then it’s a draw). They do this many times. Is it possible for Emma to choose a coin so that the probability of her winning is higher than that of Hannah?
The Scattered Scientist constructed a device consisting of a sensor and a transmitter. The average life expectancy of the sensor part is 3 years, the average lifetime of the transmitter is 5 years. Knowing the distribution of the lifetime of the sensor and the transmitter, the Scattered Scientist calculated that the average lifetime of the entire device is 3 years 8 months. Was the Scattered Scientist wrong in his calculations?
An ant goes out of the origin along a line and makes \(a\) steps of one unit to the right, \(b\) steps of one unit to the left in some order, where \(a > b\). The wandering span of the ant is the difference between the largest and smallest coordinates of the ant for the entire length of its journey.
a) Find the largest possible wandering range.
b) Find the smallest possible range.
c) How many different sequences of motion of the ant are there, where the wandering range is the greatest possible?