Problems

Age
Difficulty
Found: 15

Upon the installation of a keypad lock, each of the 26 letters located on the lock’s keypad is assigned an arbitrary natural number known only to the owner of the lock. Different letters do not necessarily have different numbers assigned to them. After a combination of different letters, where each letter is typed once at most, is entered into the lock a summation is carried out of the corresponding numbers to the letters typed in. The lock opens only if the result of the summation is divisible by 26. Prove that for any set of numbers assigned to the 26 letters, there exists a combination that will open the lock.

The key of the cipher, called the “swivelling grid”, is a stencil made from a square sheet of chequered paper of size \(n \times n\) (where \(n\) is even). Some of the cells are cut out. One side of the stencil is marked. When this stencil is placed onto a blank sheet of paper in four possible ways (marked side up, right, down or left), its cut-outs completely cover the entire area of the square, where each cell is found under the cut-out exactly once. The letters of the message, that have length \(n^2\), are successively written into the cut-outs of the stencil, where the sheet of paper is placed on a blank sheet of paper with the marked side up. After filling in all of the cut-outs of the stencil with the letters of the message, the stencil is placed in the next position, etc. After removing the stencil from the sheet of paper, there is an encrypted message.

Find the number of different keys for an arbitrary even number \(n\).

A message is encrypted by replacing the letters of the source text with pairs of digits according to some table (known only to the sender and receiver) in which different letters of the alphabet correspond to different pairs of digits. The cryptographer was given the task to restore the encrypted text. In which case will it be easier for him to perform the task: if it is known that the first word of the second line is a “thermometer” or that the first word of the third line is “smother”? Justify your answer. (It is assumed that the cryptographic table is not known).

To transmit messages by telegraph, each letter of the Russian alphabet () ( and are counted as identical) is represented as a five-digit combination of zeros and ones corresponding to the binary number of the given letter in the alphabet (letter numbering starts from zero). For example, the letter is represented in the form 00000, letter -00001, letter -10111, letter -11111. Transmission of the five-digit combination is made via a cable containing five wires. Each bit is transmitted on a separate wire. When you receive a message, Cryptos has confused the wires, so instead of the transmitted word, a set of letters is received. Find the word you sent.

Try to decipher this excerpt from the book “Alice Through the Looking Glass”:

“Zkhq L xvh d zrug,” Kxpswb Gxpswb vdlg, lq udwkhu d vfruqixo wrqh, “lw phdqv mxvw zkdw L fkrrvh lw wr phdq – qhlwkhu pruh qru ohvv”.

The text is encrypted using the Caesar Cipher technique where each letter is replaced with a different letter a fixed number of places down in the alphabet. Note that the capital letters have not been removed from the encryption.

The meeting of the secret agents took place in the green house.
image

Considering the numbers in the windows of the green house, what should be drawn in the empty frame?
image

Find one way to encrypt letters of Latin alphabet as sequences of \(0\)s and \(1\)s, each letter corresponds to a sequence of five symbols.

Pinoccio keeps his Golden Key in the safe that is locked with a numerical password. For secure storage of the Key he replaced some digits in the password by letters (in such a way that different letters substitute different digits). After replacement Pinoccio got the password \(QUANTISED17\). Honest John found out that:
• the number \(QUANTISED\) is divisible by all integers less than 17, and
• the difference \(QUA-NTI\) is divisible by \(7\).
Could he find the password?

Using the representation of Latin alphabet as sequences of \(0\)s and \(1\)s five symbols long, encrypt your first and last name.