The upper side of a piece of square paper is white, and the lower one is red. In the square, a point F is randomly chosen. Then the square is bent so that one randomly selected vertex overlaps the point F. Find the mathematical expectation of the number of sides of the red polygon that appears.
Ben is going to bend a square sheet of paper \(ABCD\). Ben calls the fold beautiful, if the side \(AB\) crosses the side \(CD\) and the four resulting rectangular triangles are equal. Before that, Jack selects a random point on the sheet \(F\). Find the probability that Ben will be able to make a beautiful fold through the point \(F\).
In the triangle \(ABC\), the angle \(A\) is equal to \(40^{\circ}\). The triangle is randomly thrown onto a table. Find the probability that the vertex \(A\) lies east of the other two vertices.
One day in autumn the Scattered Scientist glanced at his ancient wall clock and saw that three flies fell asleep on the dial. The first one slept exactly at the 12 o’clock mark on the clock, and the other two just as neatly settled on the marks of 2 hours and 5 hours. The scientist made measurements and determined that the hour hand does not threaten the flies, but the minute one will sweep them all in turn. Find the probability that exactly 40 minutes after the Scientist noticed the flies, exactly two flies out of three were swept away by the minute hand.