Problems

Age
Difficulty
Found: 6

Suppose that in each issue of our journal in the “Quantum” problem book there are five mathematics problems. We denote by \(f (x, y)\) the number of the first of the problems of the \(x\)-th issue for the \(y\)-th year. Write a general formula for \(f (x, y)\), where \(1 \geq x \geq 12\) and \(1970 \geq y \geq 1989\). Solve the equation \(f (x, y) = y\). For example, \(f (6, 1970) = 26\). Since \(1989\), the number of tasks has become less predictable. For example, in recent years, half the issues have 5 tasks, and in other issues there are 10. Even the number of magazine issues has changed, no longer being 12 but now 6.

Author: V.A. Popov

On the interval \([0; 1]\) a function \(f\) is given. This function is non-negative at all points, \(f (1) = 1\) and, finally, for any two non-negative numbers \(x_1\) and \(x_2\) whose sum does not exceed 1, the quantity \(f (x_1 + x_2)\) does not exceed the sum of \(f (x_1)\) and \(f (x_2)\).

a) Prove that for any number \(x\) on the interval \([0; 1]\), the inequality \(f (x_2) \leq 2x\) holds.

b) Prove that for any number \(x\) on the interval \([0; 1]\), the \(f (x_2) \leq 1.9x\) must be true?

The function \(f (x)\) for each real value of \(x\in (-\infty, + \infty)\) satisfies the equality \(f (x) + (x + 1/2) \times f (1 - x) = 1\).

a) Find \(f (0)\) and \(f (1)\). b) Find all such functions \(f (x)\).